Pseudomonas putida CSV86: A Candidate Genome for Genetic Bioaugmentation
نویسندگان
چکیده
Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb) revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNA(Gly), integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI) for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT) suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.
منابع مشابه
Genome Sequence of Naphthalene-Degrading Soil Bacterium Pseudomonas putida CSV86
Pseudomonas putida CSV86, a soil isolate, preferentially utilizes naphthalene over glucose as a source of carbon and energy. We present the draft genome sequence, which is 6.4 Mb in size; analysis suggests the chromosomal localization of genes coding for naphthalene utilization. The operons coding for glucose and other aromatic compounds might also be annotated in another study.
متن کاملAnalysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.
Soil isolates Pseudomonas putida CSV86, Pseudomonas aeruginosa PP4 and Pseudomonas sp. C5pp degrade naphthalene, phthalate isomers and carbaryl, respectively. Strain CSV86 displayed a diauxic growth pattern on phenylpropanoid compounds (veratraldehyde, ferulic acid, vanillin or vanillic acid) plus glucose with a distinct second lag-phase. The glucose concentration in the medium remained constan...
متن کاملCloning, Purification, Crystallization and Preliminary X-Ray Diffraction Studies of Periplasmic Glucose Binding Protein of Pseudomonas putida CSV86
Biochemical data and genomic analysis indicate the involvement of a putative ABC transporter for glucose transport in Pseudomonas putida CSV86. The periplasmic solute binding proteins are known to confer substrate specificity to the ABC transporters by binding specifically to the substrate and transferring them to their cognate inner membrane transport assembly. Periplasmic glucose binding prot...
متن کاملPreferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.
Pseudomonas putida CSV86, a naphthalene-degrading organism, exhibited diauxic growth on aromatic compounds plus glucose, with utilization of aromatics in the first log phase and of glucose in the second log phase. Glucose supplementation did not suppress the activity of degrading enzymes, which were induced upon addition of aromatic compounds. The induction was inhibited by chloramphenicol, sug...
متن کاملModulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86.
Pseudomonas putida CSV86 utilizes aromatic compounds in preference to glucose and coutilizes aromatics and organic acids. Protein analysis of cells grown on different carbon sources, either alone or in combination, revealed that a 43-kDa periplasmic-space protein was induced by glucose and repressed by aromatics and succinate. Two-dimensional gel electrophoresis and liquid chromatography-tandem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014